split algebra - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

split algebra - перевод на русский

8-DIMENSIONAL COMPOSITION ALGEBRA OVER A FIELD
Cayley algebra; Split octonion algebra

split algebra      

математика

расщепляемая алгебра

split peas         
  • A sack of split peas
THE DRIED AND SPLIT SEED OF PISUM SATIVUM
Split-peas; Split-pea; Split peas; Yellow split pea; Yellow split peas; Split Pea
лущеный горох
split peas         
  • A sack of split peas
THE DRIED AND SPLIT SEED OF PISUM SATIVUM
Split-peas; Split-pea; Split peas; Yellow split pea; Yellow split peas; Split Pea

[split'pi:z]

общая лексика

лущёный горох

Определение

split pea
¦ noun a pea dried and split in half for cooking.

Википедия

Octonion algebra

In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that

N ( x y ) = N ( x ) N ( y ) {\displaystyle N(xy)=N(x)N(y)}

for all x and y in A.

The most well-known example of an octonion algebra is the classical octonions, which are an octonion algebra over R, the field of real numbers. The split-octonions also form an octonion algebra over R. Up to R-algebra isomorphism, these are the only octonion algebras over the reals. The algebra of bioctonions is the octonion algebra over the complex numbers C.

The octonion algebra for N is a division algebra if and only if the form N is anisotropic. A split octonion algebra is one for which the quadratic form N is isotropic (i.e., there exists a non-zero vector x with N(x) = 0). Up to F-algebra isomorphism, there is a unique split octonion algebra over any field F. When F is algebraically closed or a finite field, these are the only octonion algebras over F.

Octonion algebras are always non-associative. They are, however, alternative algebras, alternativity being a weaker form of associativity. Moreover, the Moufang identities hold in any octonion algebra. It follows that the invertible elements in any octonion algebra form a Moufang loop, as do the elements of unit norm.

The construction of general octonion algebras over an arbitrary field k was described by Leonard Dickson in his book Algebren und ihre Zahlentheorie (1927) (Seite 264) and repeated by Max Zorn. The product depends on selection of a γ from k. Given q and Q from a quaternion algebra over k, the octonion is written q + Qe. Another octonion may be written r + Re. Then with * denoting the conjugation in the quaternion algebra, their product is

( q + Q e ) ( r + R e ) = ( q r + γ R Q ) + ( R q + Q r ) e . {\displaystyle (q+Qe)(r+Re)=(qr+\gamma R^{*}Q)+(Rq+Qr^{*})e.}

Zorn’s German language description of this Cayley–Dickson construction contributed to the persistent use of this eponym describing the construction of composition algebras.

Cohl Furey has proposed that octonion algebras can be utilized in an attempt to reconcile components of the standard model.

Как переводится split algebra на Русский язык